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Abstract

In the near continuum flow regime, the flow may have ditferent translational temperatures in different directions. It
is well known that for increasingly rarefied flow fields, the predictions from continuum formulation, such as the
Navier-Stokes equations, lose accuracy. These inaccuracies may be partially due to the single temperature assumption
in the Navier-Stokes equations. Here, based on the gas-kinetic Bhatnagar-Gross-Krook (BGK) equation, a multi-
translational temperature model is proposed and used in the flow calculations. In order to fix all three transiational
temperatures, two constraints are additionally proposed to model the energy exchange in different directions. Based on
the multiple temperature assumption, the Navier-Stokes relation between the stress and strain is replaced by the
temperature relaxation term, and the Navier-Stokes assumption is recovered only in the limiting case when the flow is
close to the equilibrium with the same temperature in different directions. In order to validate the current model, both

the Couette and Poiseuille flows are studied in the transition flow regime.

Kevwords: Gas-kinetic model; Multiple translational temperatures; Rarefied flow

1. Introduction

The transport phenomena, i.e., mass, heat, and mo-
mentum transfer, in different flow regime is of a great
scientific and practical interest. The classification of
various flow regimes are based on the dimensionless
parameter, i.e., the Knudsen number, which is a mea-
sure of the degree of rarefaction of the medium. The
Knudsen number K» is defined as the ratio of the
mean free path to a characteristic length scale of the
system. In the continuum flow regime where Kn <
0.001, the Navier-Stokes equations with linear
relations between stress and strain and the Fourier's
law for heat conduction are adequate to model the
fluid behavior. For flows in the continuum-transition
regime (0./ < Kn < [), the Navier-Stokes equations
are known to be inadequate Zheng et al. (2002b). This

'Corresponding author. Tel.: +852 23358 7433, Fax.: +852 2358 1643
E-mail address: makxu@ust.hk

regime is important for many practical engineering
problems, such as the simulation of microscale flows
and hypersonic flow around space vehicles in low
earth orbit. Hence, there is a strong desire and
requirement for accurate models which give reliable
solutions with lower computational costs.

Currently, the Direct Simulation Monte Carlo
(DSMC) method is the most successful technique in
the numerical prediction of low density flows Bird
(1994). However, in the continuum-transition regime,
especially for micro-channel flows, the DSMC suffers
from statistical noise in the bulk velocity because of
the random molecular motion. When the bulk velo-
city is much slower than the thermal velocity, many
independent samples are needed to eliminate the
statistical scattering, as for the micro-electro-mecha-
nical system (MEMS) simulation. In fact, for the
nitrogen gas at room temperature, the standard de-
viation in the molecular speed is about 300 m/s Fan
and Shen (2001), which would require approximately
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9 million independent samples in DSMC to reduce
the scatter in the bulk velocity to 0.1 m/s. For MEMS
gas flows that operate in the mm/s range, the number
of required samples can grow into trillions. So,
DSMC is impractical in these cases. Alternatively,
many macroscopic continuum models have been
intensively developed and reported in the literature.
These include the Navier-Stokes and the Burnett
equations from the Chapman-Enskog expansion,
Grad’s 13 moment equations, the regularized 13
equations, and many others Zheng et al. (2006). In
order to assess these continuum models, a few test
cases have been used. It seems that none of the
models is commonly acceptable for rarefied flow
simulations. Also, in all above models, a single
translational temperature is usually assumed. Overall,
the small length scales and slow bulk gas velocity
combine to make continuum solutions inaccurate, and
particle solution time consuming. Besides DSMC and
continuum models, many alternative approaches have
also been proposed in recent years, such as the
empirical slip and viscosity model McNenly (2005),
the information preservation (IP) method (Fan and
Shen, 2001; Sun and Boyd, 2002), and the Lattice
Boltzmann Method (LBM) Toschi and Succi (2005).
However, IP and LBM are mostly used for the
isothermal flows. More references about the methods
for the microflows, such as the LBM, can be found in
Karniadakis and Beskok (2002). Recently, based on
the BGK model and the generalization of particle
collision time for the translational non-equilibrium, a
multi-scale method has been successfully developed
for the argon and nitrogen shock structures for a wide
range of Mach numbers, ie, 1.2<M <11 . The
current study is a continuation of the research on the
rarefied gas flow using the gas-kinetic method. The
objective is to provide a reliable and efficient
numerical scheme in the low transition flow regime,
which could be used as an alternative to the DSMC
method.

The goal of this study is to construct a multiple
translational temperature model. After constructing
the model, the corresponding numerical scheme will
be developed and applied to near continuum flow

computation, such as the Couette and Poiseuille flows.

n this paper, Sec. 2 provides details on the con-
struction of the kinetic equation and Sec. 3 is about
the numerical scheme to solve this model. Section 4 is
about the application of the current model. The

numerical solutions from the current model are

compared with the DSMC results in the transition
flow regime. The final section is the conclusion.

2. Multiple translational temperature kinetic
model

The Boltzmann equation expresses the behavior of
a many-particle kinetic system in terms of the evo-
lution equation for a single particle gas dis-tribution
function. The simplification of the Boltzmann
equation given by the BGK model is formulated as
bhatnagar (1954),
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where f is the number density of molecules at
position x and particle velocity u=(u,v,w) at
time ¢. The left hand side of the above equation
represents the free streaming of molecules in space,
and the right side denotes the collision term. In the
BGK model, the collision operator involves simple
relaxation to a state of local equilibrium given by
f* with a characteristic time scale 7. Traditionally,
the equilibrium state is given by a Maxwellian,
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where p isthe density, U the macroscopic fluid
velocity, andﬂ:%. Here, m is the molecular

mass, & is the Boltzmann constant, and 7 is the
temperature. For an equilibrium flow, the internal
variable & accounts for the rotational and vibra-
tional modes, such as & =& + &7 +---+ &L, and the
total number of degrees of freedom K is related to
the specific heat ratio y. In the current paper, we
only consider monatomic gas with K =0 . Based on
the above BGK model, the Navier-Stokes equations
can be derived with the Chapman-Enskog expansion
truncated to the Ist-order Ohwada and Xu (2004).
Traditionally, the BGK model is considered
suitable only for isothermal rarefied gas flow. It does
not provide reliable results for non-isothermal flows
because it gives incorrect Prandtl number. The dis-
agreement between an exact solution based on the
Boltzmann equation and that obtained from the BGK
model reaches 30% near the hydrodynamic flow
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regime. In order to get the correct Prandtl number,
many modifications of the BGK model have been
proposed. One is the Ellipsoid-Statistical BGK (ES-
BGK) model of Holway (1966), and the other is the S
model of Shakhov Shakhov (1968). In the ES-BGK
model, the “temperature” becomes a tensor and it is
related to Prandtl number. In the S-model, a heat flux
term is added in the equilibrium state. In our early
BGK scheme for the continuum flow computation Xu
(2001), the correct Prandtl number is achieved th-
rough the modification of heat flux across a cell
interface in a finite volume scheme. In the following,
we are going to propose a multi-temperature model.
The purpose of constructing this model is not for the
Prandtl number correction, but for the capture of
physical multi-translational temperature phenomena
in the near continuum flow regime, where the
accuracy of the NS equations is not adequate.

This paper mainly concerns the 2D flow simulation.
In the following, a multi-T model in 2D will be
proposed. The generalized BGK model has the same
form as the onginal one,
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but the equilibrium state has multiple temperature,
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Here A, =m/(2kT,) , A, =m[(2kT,) . A, = m/(24T,)
and are related to the translational temperature 7,
T,,and 7. in x-, y- and z-directions. In order to
determine all unknowns in the corresponding
macroscopic variables, such as p,U,V,7,,T, and
T., we propose the following moments for the
collision term in the BGK model,

Jb(% + u-g{- + v%}dudwﬁv
= j¢§lf;fudvdw 5)
T
=(0,0,0,0, p(EY ~E)[7, p(EF = E) [0)
where ¢ =[lu,v,(u’ +v* +w')/2,:°/2,v* /2] . The

1st four moments on the right hand side of the above
equation are the conservative moments of the mass,

momentum, and total energy. The last two moments
are the newly constructed models which simulate the
energy exchange among different directions. This
relaxation model for the non-conservative moments
are similar to the Teller-Landau relaxation model for
the energy exchange between translational and
rotational degree of freedom. Since the translational
energies are exchanged in different directions through
particle collisions, a single relaxation time, i.e., the
particle collision time, is assumed for the energy
relaxation. The equilibrium energies pE¥ and
PE;? have the forms

£
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which are obtained based on the assumption that the
system will approach to an equilibrium state with
equal temperature. The common equilibrium tem-
perature in all directions A% is determined by
equally distributing thermal energy in all degrees of
freedom,
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where pF s the total energy, i.e.,
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Note that the last two moments on the right hand
side of Eq. (5) cannot be derived directly from the
BGK Eq. (3) itself. It is a model we construct. The
basic consideration is that there needs particle
collision to exchange energy in different directions.
The direct moments (x°/2,v’/2) to the BGK Eq.
(3) with the multiple temperature equilibrium state g
in Eq. (4) will give

1 l
p(=U*+—)—-pE }/7 and
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for the two terms on the right hand side of Eq. (5),
which are not adequate to close the system. In other
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words, when we introduce the multiple temperature
equilibrium state in Eq. (5), we introduce two more
unknowns: 4, and A. . In order to close the system
to have a unique solution, we have to introduce
additional two more equations or constraints, which
are the last two moments in (5), where A* can be
explicitly determined through the total thermal energy
in the system. So, our current multi-T BGK model is
an extension of the original BGK model and the
nonconservative moments are modeled instead of
being directly derived from the BGK collision term.
Only through the new collision moments (5), the
corresponding equations are closed and the macro-
scopic mass, momentum, total energy, and individual
energy in each direction can be updated. In Sec. 3, we
are going to present the numerical method based on
Eqgs. (3) and (5) for the time evolution of macroscopic
physical quantities. The idea in our current model is
that the thermal equilibrium between x-, y-, and z-
directions will be achieved through the particle
collisions, and there is a time delay to achieve the
temperature equilibrium. In the Navier-Stokes equa-
tions, it is assumed that the same equilibrium tem-
perature is obtained instantaneously.

3. Finite volume scheme for multi-T kinetic
model

The kinetic model constructed in the previous
section is solved based on the gas-kinetic BGK
scheme Xu (2001). It is a conservative multi-scale
finite volume method, where the update of the ma-
croscopic flow variables is through the numerical
fluxes at cell interfaces which are evaluated based on
the time-dependent gas distribution function. Since
we are going to develop a directional splitting method
to solve Eq. (5), the kinetic model in x-direction can
be written as,

foruf =(g-Nit (10)

where g is the multiple temperature equilibrium state
(4). Taking moments ¢ to the above equations in a
control volume x€[x,,,,x,,,,] and time interval
te[t",t""'], the update of the macroscopic flow
variables, i.e., W =(p,pU,pV,pE,pE,,pE,) inside
cach numerical cell [x, ,,x,,,] from time step
t"to "' becomes

n+ g 1 7 4
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where F,,, is the corresponding fluxes at a cell
interface, which are evaluated based on the gas
distribution function f,,,, there,

+1/2

F= J-u(bfm,:dudvdw. (12)
The source term is due to the moments of the
collision term in Eq. (5). For the current multi-T
model, the evaluation of the gas distribution function
f at a cell interface is similar to the BGK-NS
method in Xu (2001), where the only difference
between them is that three temperatures 7, , 7, and
T. have to be accounted for.

After the determination of f at a cell interface,
we can explicitly evaluate the heat flux there as well.
In order to simulate the flow with any realistic Prandtl
number, a modification of the heat flux in the energy
transport, such as that used in Xu (2001), is also
implemented in the present study. Therefore, the
current model can simulate flow with any Prandtl
number. Due to different translational temperatures,
the heat conduction term, i.e., (3R/2)4VT in the
standard Navier-Stokes equations, becomes approxi-
mately (3R/2)uVT” in the flow parallel direction
and (R/2)uVT* in the perpendicular direction.
Therefore, there is standard meaning of Prandtl
number anymore. The use of a scalar Prandtl number
in the current study is basically to proportionally
modify the heat flux in different directions with a
scale (1/Pr=1).

4. Numerical experiments

4.1 Shear driven couette flows

Shear driven Couette flows are encountered in
micromotors, comb mechanisms, and microbearings.
In the simplest case, the Couette flow can be used as a
prototype flow to model such flows driven by a
moving plate. Since the Couette flow is shear driven,
the pressure does not change in the stream-wise
direction. Hence, the compressibility effects become
important for large temperature fluctuations or at high
speeds. In this section, we simulate the Couette flows
in both continuum and near continuum flow regime.

This is a gas flow problem between two infinite
parallel plates, separately by a distance L. In our
computation, the most cases we study are the hard
sphere (HS) molecule and the working gas is argon.
The specific heat ratio is y=5/3 with molecular
mass m=6.63x10"kg . The viscosity coefficient
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for HS is #=2117x107JT/273N -s/m* . The
mean free path is defined as

g

Bl oyl (13)
5°2RT" p,’

where R is the gas constant, 7 and p are tem-
perature and density, respectively. In most calcula-
tions, both surfaces maintain room temperature 273 K
and Maxwell diffusive kinetic reflection boundary
condition Xu (2001) is used. The density p, has a
value corresponding to the pressure of latm (or
101325Pa) at T=273 K. The Knudsen number is
defined as /,/L, which increases as the length L
decreases. In all computations, we use 50 cells in the
one-dimensional computational domain.

In the following, we simulate the Couette flow
cases for the hard sphere (HS) molecules with fixed
upper wall velocity 300m/s. The use of this wall
velocity is from the consideration of two folds. One is
the easy solution from DSMC simulation and the
other is the temperature deviation due to large shear.
The Prandtl number used is Pr=0.68, which is
consistent with the Prandtl number in the DSMC
method for the HS model. The Kundsen numbers
simulated are Kn=0.0/ and 0.1. Figure | shows the
velocity and temperature profiles across the channel
at Kn=0.01, note three temperatures are plotted for
both DSMC and multi-T solutions, even though they
are indistinguishable. As the Kunudsen number
increases to 0./, the three temperatures can be clearly
observed in Fig. 2, where both velocity and tem-
perature from multi-T model have a fair agreement
with the DSMC results. At this Knudsen number, the
velocity profile is not a straight line. The slight
curvature near the wall may be due to the Knusden
layer in the DSMC solution. In terms of com-
putational efficiency, the multi-T model takes minutes
in a PC in these cases to get a steady state solution.
Even though we concentrate on the HS molecules in
the above simulation, the multi-T model itself can be
applied to any molecular model with a generalized
viscosity coefficient, such as the Sutherland’s law.

4.2 External force driven poiseuille flow

It is generally recognized that in the slip flow
regime with Knudsen nurmber Kn<0.1, the Navier-
Stokes equations with the slip boundary condition is
capable to accurately simulate the microchannel flow.
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Fig. 1. Velocity and temperature distributions in Couette flow,
u~~NT , Kn=001,
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Fig. 2. Velocity and temperature distributions in Couette flow,
1~ JT ., Kn=0.1. Interms of the temperature on the right
figure, the up one is 7, in the cross stream direction, the
middle one is 7, , and the low one is 7, in the gas moving
direction.



Kun Xu et al. / Journal of Mechanical Science and Technology 21(2007) 1376~1382 1381

123203

L BOK.37
[ osMC
122803 -
-
L 7
LAEGE % /’
L "" I/
[ \ /
- ’/
| “\\ //'
[ESEXY
[- AN /
[ \ d
[ S
i:ﬁE-q}h‘,‘* e
¥
es
L
L
|
sep o
2 a3t /"/
3 / 8GK.aT
s CSNMC
b / \
B2 / \\
/
4
[/ \
, A
Y P RSO SRR ST
Ioae 366 00 )

Fig. 3. Density and velocity distributions in Poiseuille flow,
BGK-3T model, Kn=0.1.
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Fig. 4. Pressure and temperature distributions in Poiseuille
flow, BGK-3T model, Kn=0.1.

However, for the simple force driven Poiseuille flow
in the slip flow regime with relatively small gradient
and Knudsen number, the Navier-Stokes equations
give qualitatively incorrect predictions Zheng (2002a;

2002b). For example, they fail to reproduce the
central minimum in the temperature profile and non
constant pressure profile, which are both predicted by
the kinetic theory and observed in the DSMC
simulations (T1) and Santos, 1994; Malek et al., 1997
Uribe and Garcia, 1999; Hess and Malek-Mansour,
1999; Aoki et al., 2002). In order to understand these
phenomena, many analysis have been done. For
example, the non-constant pressure is well explained
based on the Bumett equations Uribe and Garcia
(1999), and the temperature minimum at the center is
explained only through the kinetic theory (Tij and
Santos, 1994; Malek et al., 1997; Aoki et al., 2002),
or the super-Burmnett solution Xu (2003). As an
excellent test for capturing non-equilibrium pheno-
mena, the current multi-temperature model will be
used to study the Poiseuille flow at Kn=0.7 as well.

The set up of external force driven Poiseuille flow
case is the same as that given in Zheng (2002a).
Figures 3 and 4 present the results from the current
muiti-T model. Besides the excellent match of density
and velocity between the DSMC and the multi-T
results, the curved pressure distribution and
temperature are well captured as well. The
temperature minimum in both 7, and the averaged
temperature T can be clearly observed in Fig. 4.
This is surprising because the analysis in Uribe and
Garcia (1999) confirms that the
minimum does not appear even in the Bumett
solution. But, it can be recovered in the super-Burnett
order Xu (2003). However, based on our current
model, the temperature minimun has been recovered.
So, the use of temperature relaxation in multi-T
model to replace the stress and strain relation in the
Navier-Stokes equation has significant impact in
capturing the non-equilibrium physical phenomena in
the near continuum flow regime.

temperature

5. Conclusion

In this paper, a gas-kinetic model for the multi-
translational temperature is proposed and applied to
the near continuum flow computation. Based on the
successful application of the current model, it
becomes evident that besides modeling slip boundary
condition as discussed in the literature Kamiadakis
and Beskok (2002), the multiple temperature effect
has to be considered as well for the near continuum
flow. The current kinetic model and its numerical
method provide an effective tool for the study of
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micro-flows in the near contintum flow regime,
where the DSMC method can be very expensive.
Theoretically, the DSMC method is an operator
splitting method with decoupling particle transport
and collision. It requires that the numerical time step
is smaller than the particle collision time, which
cannot be tolerated in the continuum flow regime,
especially for high Reynolds number flows. However,
in the continuum flow regime with a single trans-
lational temperature assumption the current multi-
temperature numerical scheme will go back to the
BGK-NS method, which is an accurate compressible
Navier-Stokes flow solver.
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